INTRODUCTION

Health-related fitness knowledge is an essential element for physical education in the pursuit of cultivating physically literate individuals (Corbin, 2003). Health-related fitness knowledge (i.e., knowledge about an individual’s ability to perform physical activity and protect themselves from chronic disease) has emerged as an important area in need of improvement among adolescents to impact health-related behavior change (Demetriou, Sudeck, Thiel, & Honer, 2015; Keating et al., 2009).

The extant literature examining health-related fitness knowledge promotion in physical education contexts is sparse (Demetriou et al., 2015). Research examining the health-related fitness knowledge of adolescents (i.e., middle school-aged participants) has documented that they tend to have misconceptions about fitness (e.g., equating being ‘skinny’ to being fit; Placek et al., 2001). This study examined adolescents’ health-related fitness knowledge improvement over middle school years as they learned Five for Life® – Intermediate curriculum (Focused Fitness, 2015; Spokane Valley, WA).

METHODS

Participants

Participants included 12,044 middle school students from 47 middle schools in a mid-Atlantic state, shown below.

<table>
<thead>
<tr>
<th>Student level</th>
<th>Frequency</th>
<th>School level</th>
<th>M ± SD</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>Female/Male</td>
<td>48.9/51.1%</td>
<td>%FARM (%)</td>
<td>30.3 ± 20.84</td>
<td>4.21</td>
<td>81.56</td>
</tr>
<tr>
<td>Grade 6</td>
<td>36.9%</td>
<td>%S/F-PE (%)</td>
<td>204.55 ± 55.55</td>
<td>131.14</td>
<td>395.75</td>
</tr>
<tr>
<td>Grade 7</td>
<td>37.3%</td>
<td>%SAP (%)</td>
<td>84.74 ± 10.26</td>
<td>58.25</td>
<td>98.60</td>
</tr>
<tr>
<td>Grade 8</td>
<td>26.8%</td>
<td>%Score (%)</td>
<td>61.57 ± 12.46</td>
<td>25.00</td>
<td>84.10</td>
</tr>
</tbody>
</table>

Variables and Instruments

This study included variables at both participant/person and school/institution levels. Participant level variables included gender, grade, and health-related fitness knowledge test scores. Participant health-related fitness knowledge was assessed by health-related fitness knowledge test that was designed specifically for Five for Life® Curriculum – Intermediate. We calculated the percentage score using the number of correct response divided by the total number of items to indicate student performance.

The school level variables included percentage of students receiving free and reduced meal (FARM), student faculty ratio for physical education (S/F-PE), and school academic performance (SAP). FARM and S/F-PE were collected from school district website and report data from state department of education. S/F-PE is calculated by dividing enrollment by the number of fulltime PE teachers. The SAP data were collected from the state department of education website. We computed the aggregated average passing rate for each school to indicate SAP.

RESULTS

As shown in Table 1, the average S/F-PE is 204.55 ± 55.55. The overall mean for health-related fitness knowledge percentage score is 61.57 ± 12.46 across three grade levels. The composite average for SAP is 84.74 ± 10.26% passing the state test. The full unconditional model shows that intra-class correlation coefficient $\rho = 0.8846/(0.4736+0.8846) = 0.16$, suggesting that a significant portion of the variance in student test score can be explained at school level. The final model (Table 2) shows that the predicted average health-related fitness test score at sixth grade for females is 42.81 ± 1.32, holding other factors constant. For males, the predicted score for sixth grade is 73.90, which is three points higher, though not significantly, than for females ($p > 0.05$). FARM is a significant negative predictor for student scores; one standard deviation increase in FARM is associated with a 14.68 decrease in predicted test score ($p < 0.05$). S/F-PE is not significant predictor for student health-related fitness score. SAP is positively associated with student test scores, with a borderline statistical significance ($p = 0.051$). One standard deviation increase in SAP is likely to predict a 11.90 point increase in predicted health-related fitness knowledge score.

As shown in Table 2, the predicted middle student health-related fitness knowledge growth is 17.06 ± 1.02% per year, holding other factors constant. FARM, SAP, and S/F-PE are not significantly associated with the health-related fitness knowledge growth rate ($p > 0.05$). Gender is significantly associated with student growth rate ($p < 0.05$). Specifically, males have a significantly lower growth rate than females during the middle school years. As illustrated in Figure 1, this growth rate difference yields males a lower test score by 8th grade, even though they started with a slightly higher score than females in 6th grade, holding other factors constant.

DISCUSSION & CONCLUSIONS

The findings of this study add to the existing literature in that a well-focused curriculum is able to increase student health-related knowledge as evidenced in this and other studies (Chen et al., 2007; Leonetti et al., 2016; Sun et al., 2012). The data suggest that student health-related fitness knowledge growth in middle school years is linear, not quadratic as in other disciplinary area such as vocabulary growth (Huttenlocher et al., 1991). The results provide evidence that school level FARM and SAP are positively related to student health-related fitness knowledge score.

The authors wish to thank the school districts and Five for Life® for sharing the invaluable data. Poster Prepared for 2017 SHAPE American Convention.